Summary:

Various studies have showed that peracetic acid is effective in reducing total microorganisms on food products as well as effectively acting against several pathogenic and spoilage organisms. Although research with seafood is limited, results from work with poultry should be somewhat applicable to the treatment of whole fish or fish fillets.

George J. Flick, Jr., Ph.D.
Food Science and Technology Department
Virginia Tech/Virginia Sea Grant (0418) Blacksburg, Virginia 24061 USA flickg@vt.edu

Peracetic Acid Offers Alternative Sanitizing For Seafood Processors

Studies that show the effectiveness of peracetic acid against bacteria and other microorganisms on poultry hold promise for similar treatment with seafood.

The sources of spoilage and pathogenic microorganisms in fish- and shellfish-processing facilities include raw materials, workers, equipment, containers, floor drains, ventilation systems, and water applied under pressure during cleaning and sanitation procedures. Even when cleaning and sanitizing operations are regularly performed, not all microorganisms are eliminated from food and nonfood contact surfaces.

If microorganisms are not destroyed, they can grow during processing, distribution, retailing, and preparation, which reduces the quality of the product and can present a possible food safety hazard. The removal of contaminant microflora from surfaces in processing facilities can be achieved using different sanitizers.

Sanitizers and Sanitation

The question of which sanitizer to use will depend on cost, availability, the nature of the soil in the facility, the processing equipment and facility materials, and the conditions under which food is processed. Sanitizer selection is made more difficult by the increased resistance to antimicrobials exhibited by adherent cells (biofilms) and the fact that information on the effectiveness of most sanitizers was obtained from tests on suspended planktonic cells.

When microorganisms settle on or adhere to a surface, they can be protected by irregularities in the surface that hamper the action of sanitizers. Therefore, the efficiency of sanitizers under specific application condi-
tions must be well defined for effective sanitation programs to be implemented.

Peracetic Acid

Peracetic acid possesses many advantages when compared to sodium hypochlorite, one of the most common sanitizers. One important advantage is that it does not react with proteins to produce toxic or carcinogenic compounds. It also has a low environmental impact, and has been reported more effective than sodium hypochlorite against biofilms.

Peracetic acid can be used over wide spectrums of temperature ($0-40^{\circ} \mathrm{C}$) and pH (3.0-7.5), in clean-in-place processes, and with hard water. In addition, protein residues do not affect its efficiency. However, it may not provide the microbial reduction sometimes achieved by sodium hypochlorite.

Poultry Studies

Only limited research has been performed on the effectiveness of peracetic acid as a sanitizer in fish and shellfish processing. However, studies with other food products provide an excellent reference for what might be achieved with seafood.

In a 2004 study, three treatments $-30 \mathrm{mg} / \mathrm{l}$ hydrogen peroxide, 0.5% peracetic acid, and $125 \mathrm{mg} / \mathrm{l}$ ozone - and a chlorine control were applied to birds that were then sampled for the presence of Salmonella bacteria (Figure 1).

The bacterial load was significantly ($\mathrm{P}<0.05$) reduced after treatment with peracetic acid. The effectiveness of chlorine as a disinfectant was reduced when pH exceeded 6.0 , temperature was below $30^{\circ} \mathrm{C}$, and in the presence of some organic substances. The chlorine also led to the formation of biofilms, which exacerbated cleaning and sanitizing.

A second poultry study examined the populations of Campylobacter jejuni after exposure to water containing chlorine and peracetic acid (Table 1). Peracetic acid and chlorine were equally effective,

Figure 1. Salmonella prevalence on chicken meat after the application of varied sanitizers.
producing a 90% decrease in numbers when used at 100 ppm for 15 minutes of exposure, and no significant decrease when used at 40 ppm for two minutes.

Other Studies

In another study, waters containing total coliforms, fecal coliforms, Eschericihia coli, and enterococci were treated with chlorine dioxide and peracetic acid. Results from the study (Table 2) showed that peracetic acid was as effective as chlorine dioxide in reducing total coliforms, fecal coliforms, and Escherichia coli. Chlorine dioxide was more effective in reducing the total plate count and enterococci count.

Stainless steel plates containing 1 $\mathrm{x} 10^{8}$ colony-forming units (CFU)/ cm^{2} of Listeria monocytogenes and Pseudomonas sp . biofilms were subjected to a hypochlorite compound and peracetic acid at varying concentrations for one and five minutes (Table $3)$. There were no differences between residual Listeria populations, but some significant differences between residual Pseudomonas populations were observed. The differences, however, were probably not large enough to be of practical concern, since large reductions in the microorganism were achieved.

A disinfection study was performed on lettuce comparing the effectiveness of $80-\mathrm{ppm}$ peracetic acid and $200-\mathrm{ppm}$ sodium hypochlorite. The results showed that the effectiveness of peracetic acid was equivalent to that of sodium hypochlorite (Table 4). Both sanitizers were capable of effecting a 99\% reduction in mesophilic plate count and total coliforms.

Table 1. Campylobacter jejeuni populations on chicken skin exposed to chlorine and peracetic acid.

Chemical	Concentration (ppm)	Live Cell Count $(\log$ CFU/cm²)
Control		$5.5 \pm 0.6^{\mathrm{a}}$
Chlorine	40	$5.0 \pm 0.1^{\mathrm{ab}}$
	100	$4.8 \pm 0.5^{\mathrm{b}}$
Peracetic acid	40	$4.9 \pm 0.5^{\mathrm{ab}}$
	100	$4.8 \pm 0.1^{\mathrm{b}}$

Table 2. Escherichia coli populations in water exposed to chlorine dioxide and peracetic acid.

	Reduction (\%)	
	Peracetic Acid	Chlorine Dioxide
$\begin{array}{l}\text { Heterotrophic total count } \\ \text { at } 36^{\circ} \text { C (CFU ml } \\ \text { Total coliforms }\end{array}$	$80-28$	$85-77$
(MPN 100 ml		

Table 3. Effects of chlorine and peracetic acid on stainless steel inoculated with Listeria and Pseudomonas biofilms.

		Concentration (mg/l) and Exposure Time*			
		40		80	
Microorganism	Sanitizer	1 minute	5 minutes	1 minute	5 minutes
Listeria	Peracetic acid	$4.0^{\text {a }}$	$3.6{ }^{\text {a }}$	$3.8{ }^{\text {a }}$	$2.7{ }^{\text {a }}$
	Chlorine	$5.4{ }^{\text {a }}$	$3.2{ }^{\text {a }}$	$3.6{ }^{\text {a }}$	$2.8{ }^{\text {a }}$
Pseudomonas	Peracetic acid	$4.5{ }^{\text {b }}$	$7.2^{\text {a }}$	$7.2{ }^{\text {a }}$	$3.5{ }^{\text {a }}$
	Chlorine	$7.2{ }^{\text {a }}$	$5.2^{\text {ab }}$	$5.6{ }^{\text {ab }}$	$4.9{ }^{\text {a }}$

*Within each column, results without a common letter differ significantly ($p<0.05$)

Maximum Aeration!

- Lightweight and Portable
- Increases Production Capabilities
- Ideal for Zero Exchange Systems
- Economical \& Low Maintenance

Ask the experts in aeration about the Original AIRE- $\mathrm{O}_{2}{ }^{\circ}$ Aerator (sine 1974)

SUPERIOR MIXING

AIRE- $\mathrm{O}_{2}{ }^{\text {B }}$

[^0]
[^0]: 4100 Peavey Road • Chaska, MN 55318-2353 USA
 TEL +1-952-448-6789 • 1-800-328-8287 (USA Only)
 FAX +1-952-448-7293 • aqua@aireo2.com
 ©2005 Aeration Industries Intl., Inc. All Rights Reserved.

