Enviro Tech Chemical Services Standard Operating Procedure: DIS: 001 v1 12/15/06

Determination of the Activity of Aqueous Bromine-Containing Solutions By Iodometric <u>Titration</u>

Background

Under acidic conditions, the active ingredient in aqueous bromine-containing solutions quantitatively liberates iodine from excess potassium iodide. The iodine is titrated with a standard solution of sodium thiosulfate, and a starch indicator is introduced near the endpoint. The volume of titrant required is used to calculate the activity of the bromine-containing solution.

Apparatus

Digital burette capable of dispensing in single increments of 0.01 ml with accuracy +/-0.2% Erlenmeyer flask (125 ml) Magnetic stirrer and stir bar Analytical balance capable of reading 0.001 g

Reagents

De-ionized or reverse osmosis water Potassium iodide crystals, ACS Glacial acetic acid, trace-grade 99.7% min. 0.100N sodium thiosulfate, Na₂S₂O₃ * Starch indicator solution, 1% w/v, for iodometric titrations

Procedure

- (1) Accurately weigh (4 decimal places) approximately 0.2 g of aqueous brominecontaining solution to a 125 ml Erlenmeyer flask.
- (2) Dilute with 50 ml de-ionized or reverse osmosis water and add a magnetic stir bar.
- (3) Add 5 ml glacial acetic acid and 1 g potassium iodide
- (4) With stirring, titrate the liberated iodine with 0.100N sodium thiosulfate $(Na_2S_2O_3)$ until the solution turns a faint straw color.
- (5) Add 1 ml of starch indicator solution, and add the titrant dropwise to discharge the blue coloration. Record the volume (V_A /ml).
- (6) Perform a blank determination by repeating steps (2)-(5). Record the volume (V_B). Note that V_B may be zero.

Calculation

To express the results as weight % available Cl_2 use:

Wt % available $Cl_2 = (V_A - V_B)/ml \ge N Na_2S_2O_3 \ge 0.03545 \ge 100$ Wt. of sample/g

* The 0.1 N sodium thiosulfate must be standardized using ASTM or ACS procedures.